SlimeVR_DeftTracker/Main_Tracker/Firmware/SlimeVR-Tracker-ESP/lib/math/vector3.h
2024-10-04 12:23:11 +08:00

438 lines
11 KiB
C++

/*************************************************************************/
/* vector3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VECTOR3_H
#define VECTOR3_H
#include "shared.h"
class Basis;
struct Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
float x;
float y;
float z;
};
float coord[3] = { 0 };
};
inline const float& operator[](int p_axis) const {
return coord[p_axis];
}
inline float& operator[](int p_axis) {
return coord[p_axis];
}
void set_axis(int p_axis, float p_value);
float get_axis(int p_axis) const;
int min_axis() const;
int max_axis() const;
inline float length() const;
inline float length_squared() const;
inline void normalize();
inline Vector3 normalized() const;
inline bool is_normalized() const;
inline Vector3 inverse() const;
inline void zero();
// void snap(Vector3 p_val);
// Vector3 snapped(Vector3 p_val) const;
void rotate(const Vector3& p_axis, float p_phi);
Vector3 rotated(const Vector3& p_axis, float p_phi) const;
/* Static Methods between 2 vector3s */
inline Vector3 lerp(const Vector3& p_b, float p_t) const;
inline Vector3 slerp(const Vector3& p_b, float p_t) const;
Vector3 cubic_interpolate(const Vector3& p_b, const Vector3& p_pre_a, const Vector3& p_post_b, float p_t) const;
Vector3 cubic_interpolaten(const Vector3& p_b, const Vector3& p_pre_a, const Vector3& p_post_b, float p_t) const;
Vector3 move_toward(const Vector3& p_to, const float p_delta) const;
inline Vector3 cross(const Vector3& p_b) const;
inline float dot(const Vector3& p_b) const;
Basis outer(const Vector3& p_b) const;
Basis to_diagonal_matrix() const;
inline Vector3 abs() const;
inline Vector3 floor() const;
inline Vector3 sign() const;
inline Vector3 ceil() const;
inline float distance_to(const Vector3& p_b) const;
inline float distance_squared_to(const Vector3& p_b) const;
inline Vector3 posmod(const float p_mod) const;
inline Vector3 posmodv(const Vector3& p_modv) const;
inline Vector3 project(const Vector3& p_b) const;
inline float angle_to(const Vector3& p_b) const;
inline Vector3 direction_to(const Vector3& p_b) const;
inline Vector3 slide(const Vector3& p_normal) const;
inline Vector3 bounce(const Vector3& p_normal) const;
inline Vector3 reflect(const Vector3& p_normal) const;
bool is_equal_approx(const Vector3& p_v) const;
/* Operators */
inline Vector3& operator+=(const Vector3& p_v);
inline Vector3 operator+(const Vector3& p_v) const;
inline Vector3& operator-=(const Vector3& p_v);
inline Vector3 operator-(const Vector3& p_v) const;
inline Vector3& operator*=(const Vector3& p_v);
inline Vector3 operator*(const Vector3& p_v) const;
inline Vector3& operator/=(const Vector3& p_v);
inline Vector3 operator/(const Vector3& p_v) const;
inline Vector3& operator*=(float p_scalar);
inline Vector3 operator*(float p_scalar) const;
inline Vector3& operator/=(float p_scalar);
inline Vector3 operator/(float p_scalar) const;
inline Vector3 operator-() const;
inline bool operator==(const Vector3& p_v) const;
inline bool operator!=(const Vector3& p_v) const;
inline bool operator<(const Vector3& p_v) const;
inline bool operator<=(const Vector3& p_v) const;
inline bool operator>(const Vector3& p_v) const;
inline bool operator>=(const Vector3& p_v) const;
inline Vector3() {}
inline Vector3(float p_x, float p_y, float p_z) {
x = p_x;
y = p_y;
z = p_z;
}
};
Vector3 Vector3::cross(const Vector3& p_b) const {
Vector3 ret(
(y * p_b.z) - (z * p_b.y),
(z * p_b.x) - (x * p_b.z),
(x * p_b.y) - (y * p_b.x));
return ret;
}
float Vector3::dot(const Vector3& p_b) const {
return x * p_b.x + y * p_b.y + z * p_b.z;
}
Vector3 Vector3::abs() const {
return Vector3(std::abs(x), std::abs(y), std::abs(z));
}
Vector3 Vector3::sign() const {
return Vector3(Math::sign(x), Math::sign(y), Math::sign(z));
}
Vector3 Vector3::floor() const {
return Vector3(std::floor(x), std::floor(y), std::floor(z));
}
Vector3 Vector3::ceil() const {
return Vector3(std::ceil(x), std::ceil(y), std::ceil(z));
}
Vector3 Vector3::lerp(const Vector3& p_b, float p_t) const {
return Vector3(
x + (p_t * (p_b.x - x)),
y + (p_t * (p_b.y - y)),
z + (p_t * (p_b.z - z)));
}
Vector3 Vector3::slerp(const Vector3& p_b, float p_t) const {
float theta = angle_to(p_b);
return rotated(cross(p_b).normalized(), theta * p_t);
}
float Vector3::distance_to(const Vector3& p_b) const {
return (p_b - *this).length();
}
float Vector3::distance_squared_to(const Vector3& p_b) const {
return (p_b - *this).length_squared();
}
Vector3 Vector3::posmod(const float p_mod) const {
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
}
Vector3 Vector3::posmodv(const Vector3& p_modv) const {
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
}
Vector3 Vector3::project(const Vector3& p_b) const {
return p_b * (dot(p_b) / p_b.length_squared());
}
float Vector3::angle_to(const Vector3& p_b) const {
return std::atan2(cross(p_b).length(), dot(p_b));
}
Vector3 Vector3::direction_to(const Vector3& p_b) const {
Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
ret.normalize();
return ret;
}
/* Operators */
Vector3& Vector3::operator+=(const Vector3& p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3& p_v) const {
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
}
Vector3& Vector3::operator-=(const Vector3& p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3& p_v) const {
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
}
Vector3& Vector3::operator*=(const Vector3& p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3& p_v) const {
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
}
Vector3& Vector3::operator/=(const Vector3& p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3& p_v) const {
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}
Vector3& Vector3::operator*=(float p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
inline Vector3 operator*(float p_scalar, const Vector3& p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(float p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3& Vector3::operator/=(float p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3 Vector3::operator/(float p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3& p_v) const {
return x == p_v.x && y == p_v.y && z == p_v.z;
}
bool Vector3::operator!=(const Vector3& p_v) const {
return x != p_v.x || y != p_v.y || z != p_v.z;
}
bool Vector3::operator<(const Vector3& p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z < p_v.z;
}
else {
return y < p_v.y;
}
}
else {
return x < p_v.x;
}
}
bool Vector3::operator>(const Vector3& p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z > p_v.z;
}
else {
return y > p_v.y;
}
}
else {
return x > p_v.x;
}
}
bool Vector3::operator<=(const Vector3& p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z <= p_v.z;
}
else {
return y < p_v.y;
}
}
else {
return x < p_v.x;
}
}
bool Vector3::operator>=(const Vector3& p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z >= p_v.z;
}
else {
return y > p_v.y;
}
}
else {
return x > p_v.x;
}
}
inline Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
return p_a.cross(p_b);
}
inline float vec3_dot(const Vector3& p_a, const Vector3& p_b) {
return p_a.dot(p_b);
}
float Vector3::length() const {
float x2 = x * x;
float y2 = y * y;
float z2 = z * z;
return std::sqrt(x2 + y2 + z2);
}
float Vector3::length_squared() const {
float x2 = x * x;
float y2 = y * y;
float z2 = z * z;
return x2 + y2 + z2;
}
void Vector3::normalize() {
float lengthsq = length_squared();
if (lengthsq == 0) {
x = y = z = 0;
}
else {
float length = std::sqrt(lengthsq);
x /= length;
y /= length;
z /= length;
}
}
Vector3 Vector3::normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
}
void Vector3::zero() {
x = y = z = 0;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3& p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector3 Vector3::bounce(const Vector3& p_normal) const {
return -reflect(p_normal);
}
Vector3 Vector3::reflect(const Vector3& p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
#endif