/*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #pragma once #include #define UNIT_EPSILON 0.00001 #define CMP_EPSILON 0.00001 #define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON) #define CMP_NORMALIZE_TOLERANCE 0.000001 #define CMP_POINT_IN_PLANE_EPSILON 0.00001 #define Math_SQRT12 0.7071067811865475244008443621048490 #define Math_SQRT2 1.4142135623730950488016887242 #define Math_LN2 0.6931471805599453094172321215 #define Math_TAU 6.2831853071795864769252867666 #define Math_PI 3.14159265358979323846264338332795 #define Math_E 2.7182818284590452353602874714 #define Math_INF INFINITY #define Math_NAN NAN // Generic ABS function, for math uses please use Math::abs. #ifndef ABS #define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v)) #endif #ifndef SGN #define SGN(m_v) (((m_v) < 0) ? (-1.0) : (+1.0)) #endif #ifndef MIN #define MIN(m_a, m_b) (((m_a) < (m_b)) ? (m_a) : (m_b)) #endif #ifndef MAX #define MAX(m_a, m_b) (((m_a) > (m_b)) ? (m_a) : (m_b)) #endif #ifndef CLAMP #define CLAMP(m_a, m_min, m_max) (((m_a) < (m_min)) ? (m_min) : (((m_a) > (m_max)) ? m_max : m_a)) #endif // Generic swap template. #ifndef SWAP #define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y)) template inline void __swap_tmpl(T& x, T& y) { T aux = x; x = y; y = aux; } #endif // SWAP namespace Math { inline double fposmod(double p_x, double p_y) { return (p_x >= 0) ? std::fmod(p_x, p_y) : p_y - std::fmod(-p_x, p_y); } inline bool is_equal_approx(double a, double b) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. double tolerance = UNIT_EPSILON * ABS(a); if (tolerance < UNIT_EPSILON) { tolerance = UNIT_EPSILON; } return ABS(a - b) < tolerance; } inline bool is_equal_approx(double a, double b, double eps) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. return ABS(a - b) < eps; } inline bool is_zero_approx(double a){ return (is_equal_approx(a, 0.)); } static inline double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; } static inline float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; } static inline double lerp_angle(double p_from, double p_to, double p_weight) { double difference = fmod(p_to - p_from, Math_TAU); double distance = fmod(2.0 * difference, Math_TAU) - difference; return p_from + distance * p_weight; } static inline float lerp_angle(float p_from, float p_to, float p_weight) { float difference = fmod(p_to - p_from, (float)Math_TAU); float distance = fmod(2.0f * difference, (float)Math_TAU) - difference; return p_from + distance * p_weight; } static inline double inverse_lerp(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); } static inline float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); } static inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); } static inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); } static inline double smoothstep(double p_from, double p_to, double p_s) { if (is_equal_approx(p_from, p_to)) { return p_from; } double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0); return s * s * (3.0 - 2.0 * s); } static inline float smoothstep(float p_from, float p_to, float p_s) { if (is_equal_approx(p_from, p_to)) { return p_from; } float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f); return s * s * (3.0f - 2.0f * s); } inline int sign(double a) { return (a > 0) ? 1 : -1; } };