SlimeVR_DeftTracker/Main_Tracker/Firmware/SlimeVR-Tracker-ESP/lib/magneto/madgwick.cpp

168 lines
6.6 KiB
C++
Raw Normal View History

2024-10-04 12:23:11 +08:00
#include "madgwick.h"
volatile float beta = 0.1f;
void madgwickQuaternionUpdate(float q[4], float ax, float ay, float az, float gx, float gy, float gz, float deltat)
{
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q[1] * gx - q[2] * gy - q[3] * gz);
qDot2 = 0.5f * (q[0] * gx + q[2] * gz - q[3] * gy);
qDot3 = 0.5f * (q[0] * gy - q[1] * gz + q[3] * gx);
qDot4 = 0.5f * (q[0] * gz + q[1] * gy - q[2] * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0 = 2.0f * q[0];
_2q1 = 2.0f * q[1];
_2q2 = 2.0f * q[2];
_2q3 = 2.0f * q[3];
_4q0 = 4.0f * q[0];
_4q1 = 4.0f * q[1];
_4q2 = 4.0f * q[2];
_8q1 = 8.0f * q[1];
_8q2 = 8.0f * q[2];
q0q0 = q[0] * q[0];
q1q1 = q[1] * q[1];
q2q2 = q[2] * q[2];
q3q3 = q[3] * q[3];
// Gradient decent algorithm corrective step
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q[1] - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
s2 = 4.0f * q0q0 * q[2] + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
s3 = 4.0f * q1q1 * q[3] - _2q1 * ax + 4.0f * q2q2 * q[3] - _2q2 * ay;
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q[0] += qDot1 * deltat;
q[1] += qDot2 * deltat;
q[2] += qDot3 * deltat;
q[3] += qDot4 * deltat;
// Normalise quaternion
recipNorm = invSqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
q[0] *= recipNorm;
q[1] *= recipNorm;
q[2] *= recipNorm;
q[3] *= recipNorm;
}
void madgwickQuaternionUpdate(float q[4], float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat)
{
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float hx, hy;
float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
madgwickQuaternionUpdate(q, ax, ay, az, gx, gy, gz, deltat);
return;
}
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q[1] * gx - q[2] * gy - q[3] * gz);
qDot2 = 0.5f * (q[0] * gx + q[2] * gz - q[3] * gy);
qDot3 = 0.5f * (q[0] * gy - q[1] * gz + q[3] * gx);
qDot4 = 0.5f * (q[0] * gz + q[1] * gy - q[2] * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0mx = 2.0f * q[0] * mx;
_2q0my = 2.0f * q[0] * my;
_2q0mz = 2.0f * q[0] * mz;
_2q1mx = 2.0f * q[1] * mx;
_2q0 = 2.0f * q[0];
_2q1 = 2.0f * q[1];
_2q2 = 2.0f * q[2];
_2q3 = 2.0f * q[3];
_2q0q2 = 2.0f * q[0] * q[2];
_2q2q3 = 2.0f * q[2] * q[3];
q0q0 = q[0] * q[0];
q0q1 = q[0] * q[1];
q0q2 = q[0] * q[2];
q0q3 = q[0] * q[3];
q1q1 = q[1] * q[1];
q1q2 = q[1] * q[2];
q1q3 = q[1] * q[3];
q2q2 = q[2] * q[2];
q2q3 = q[2] * q[3];
q3q3 = q[3] * q[3];
// Reference direction of Earth's magnetic field
hx = mx * q0q0 - _2q0my * q[3] + _2q0mz * q[2] + mx * q1q1 + _2q1 * my * q[2] + _2q1 * mz * q[3] - mx * q2q2 - mx * q3q3;
hy = _2q0mx * q[3] + my * q0q0 - _2q0mz * q[1] + _2q1mx * q[2] - my * q1q1 + my * q2q2 + _2q2 * mz * q[3] - my * q3q3;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q0mx * q[2] + _2q0my * q[1] + mz * q0q0 + _2q1mx * q[3] - mz * q1q1 + _2q2 * my * q[3] - mz * q2q2 + mz * q3q3;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q[2] * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q[3] + _2bz * q[1]) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q[2] * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q[1] * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q[3] * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q[2] + _2bz * q[0]) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q[3] - _4bz * q[1]) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q[2] * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q[2] - _2bz * q[0]) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q[1] + _2bz * q[3]) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q[0] - _4bz * q[2]) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q[3] + _2bz * q[1]) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q[0] + _2bz * q[2]) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q[1] * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q[0] += qDot1 * deltat;
q[1] += qDot2 * deltat;
q[2] += qDot3 * deltat;
q[3] += qDot4 * deltat;
// Normalise quaternion
recipNorm = invSqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
q[0] *= recipNorm;
q[1] *= recipNorm;
q[2] *= recipNorm;
q[3] *= recipNorm;
}